PENERAPAN DATA MINING DENGAN ASSOCIATION RULES UNTUK MELIHAT HUBUNGAN TERTANGGUNG, PEMILIHAN PRODUK DAN PERILAKU NASABAH (Studi Kasus: PT. Prudential Life Assurance)

Awan Setiawan, Erwin Yulianto

Abstract


The world of insurance business that is full of competition makes the perpetrators must always think about breakthrough strategies that can guarantee the continuity of their insurance business. One of the main assets owned by insurance companies is business data in an extraordinary amount.

Data mining is a new technology that is very useful to help insurance companies find very important information from business data as the main asset they have. Data mining can predict trends and traits of business behavior that are very useful to support important decision making. Automated analysis carried out by data mining exceeds that carried out by traditional support systems. Apriori and FP-Growth are the most famous algorithms for finding high frequency patterns, these algorithms are part of the Rule Association used in this study.


Keywords


Data Mining; Association Rules; FP Growth; Algoritma Apriori; Perilaku Nasabah

Full Text:

PDF

References


Al Fata, Hanif Universitas Amikom, 2007,” Analisis dan Perancangan Sistem Informasi untuk Keunggulan Bersaing Perusahaan dan Organisasi Modern”, Penerbit Andi, Jogjakarta

Bramer, Max, 2007, “Principles of Data Mining”, Springer, London

Elmasri, Ramez & Shamkant B. Navathe, 2000, “Fundamentals of Database Systems. Third Edition”, Addison Wesley Publishing Company, New York.

Han, J. & Kamber, M, 2006, “Data Mining Concepts and Techniques Second Edition”. Morgan Kauffman, San Francisco.

Kadir, Abdul, 1999, “Konsep dan Tuntunan Praktis Basis Data”, Penerbit Andi, Yogyakarta.

Kotler, Philip & Lan Keller, Kevin, Manajement Pemasaran, Indonesia, PT Macanan Jaya Cemerlang, 2008

Rainardi, Vincent, 2008, “Building a Data Warehouse with Examples in SQL Server”, Springer, New York

Santosa, Budi, 2007, “Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis”, Graha Ilmu, Yogyakarta

Setiawan, Awan & Margono, Kuntjahjo SL, 2015, “Predicting Success Study Using Students GPA Category”, The Asian Journal of Technology Management, Vol. 8, No. 1, Institut Teknologi Bandung, School of Business and Management

Setiawan, Awan & Rusmawan, Dadan, 2017, “Graduate Rate Analysis of Student Using Data Mining and Algorithm Apriori”, International Journal of Soft Computing, Vol. 12, No. 5, p287-293

Suryana, Ase., Yulianto, Erwin., Pratama, & Khrisna Dea, 2017, “Perancangan Sistem Pendukung Keputusan Penilaian Prestasi Pegawai Terbaik Menggunakan Metode SAW, AHP & TOPSIS”, Jurnal Ilmiah Teknologi Informasi

Terapan (Jitter), Vol. 3, No. 2, p130-139, Universitas Widyatama, Bandung

Therling K. (2006). “An Introduction to DataMining: Discovering hidden value in your data warehouse”, www.thearling.com, diakses tanggal 15 April 2018




DOI: https://doi.org/10.32627/aims.v2i1.63

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Awan Setiawan, Erwin Yulianto

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Journal AIMS telah terindeks pada :