PENGELOMPOKAN BIDANG LAJU PERTUMBUHAN EKONOMI INDONESIA MENGGUNAKAN ALGORITMA K-MEANS

Amril Mutoi Siregar

Abstract


Indonesian is one of countries with economic development in the very good category. Economic growth is seen from several supporting fields, Indonesia has a lot of excess natural resources, which can support the economy compared to other countries. But the problem faced is the lack of maximum management of the economy, Indonesia has economic support categorized into 17 fields. Among the fields not in the same development because they are still stuck in one area, it turns out that Indonesia has all the potential to improve all fields. To increase the growth of all fields, the government must have correct, accurate and relevant data to group these fields. In this study using the Decision Tree algorithm to classify fields supporting economic growth automatically. The grouping results into three classes, namely high, medium, low. After the research was conducted the results were that the high category group was Mining and Excavation, Construction, transportation and warehousing, Provosion of accommodation and food Drinking, Information and Communication, Financial Services and Insurance, Real Estate, Educational Services, Health Services and Social Activities, medium groups were Procurement of Electricity and Gas, Company Services and low-income groups are in the fields of Agriculture, Forestry, and Fisheries, Processing Industry, water supply , waste management, Waste and Recycling, large Trade and retail, car and motorcycle repair, Government Administration, Defense and Compulsory Social Security, Other Services.

Keywords


Clustering; Datamining; Algoritma K-Means; Ekonomi

Full Text:

PDF

References


Agusta. (2017). K-means Penerapan Permasalahan di STMIK STIKOM Bali. Denpasar Bali.

Connoly, et al.(2005). A Practical Approach to Design Implementation and Management, 4th.

Harlow Addison Wesley.

Larose, DT. (2014). Discovering Knowledge in Data:an Introduction to Data Mining. Jhon Wiley and Sons.

Pambudi, Eko Wicaksono dan Miyasto. (2013). Analisis Pertumbuhan Ekonomi dan Faktor-faktor yang Mempengaruhi Kabupaten/Kota di Provinsi Jawa Tengah. http://ejournal-

s1.undip.ac.id/index.php/jme. Volume 2, Nomor 2. Semarang.

Qudri, et al. (2010). Drop Out Feature of Student Data for Academic Performance Using

Decision Tree Techniques. Global Journal of Computer Science and Technology,2-4.

Rahmat B, et al. (2017). Implementasi K-means Clustering dengan Rapidminer untuk Analisis

Daerah Rawan Kecelakaan.

Siregar AM. (2018). Implementasi Algoritma Clustering dengan Singular Vector Decomposition untuk Menunjang Keputusan dalam Meningkatkan Produksi Tanaman Jagung. Institut Pertanian Bogor.

Siregar AM,Et al. (2017). Data Mining Pengolahan data Menjadi Informasi dengan Rapidminer. Kekata Publisher : Solo.

Susanti H, et al. (2017). Analisis Pengaruh Pertumbuhan Ekonomi dan Pengeluaran Pemerintah Aceh terhadap Pendapatan Asli Daerah Provinsi Aceh Setelah Tsunami. Volume 4 Nomor 1, Mei 2017. E-ISSN. 2549-8355.

Tan, et al. (2006). Introduction to Data Mining. Boston: Pearsong education, ltd.

Wu, et al.(2009). The Top Ten Algortihms in Data Mining. Boca Raton:CRC Press.

Zumaidah L,N et al. (2018). Pengaruh Total Aset, Dana Pihak Ketiga, dan Kredit pada Bank Umum terhadap Pertumbuhan Ekonomi Provinsi-provinsi di Indonesia pada Tahun 2013-2016. Jurnal Ilmu Ekonomi Vol 2 Jilid 2/Tahun 2018 Hal. 251 – 263.




DOI: https://doi.org/10.32627/aims.v2i2.71

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Amril Mutoi Siregar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Journal AIMS telah terindeks pada :